
Atherosclerosis and thrombosis: insights from large animal models
2011, J Biomed Biotechnol. 2011;2011:907575. Epub 2011 Jan 2.
Vilahur G, Padro T, Badimon L.
Autors del centre relacionats: Badimon Lina, Padró Teresa, Vilahur Gemma.
Vilahur G, Padro T, Badimon L.
Autors del centre relacionats: Badimon Lina, Padró Teresa, Vilahur Gemma.
Cardiovascular Research Center (CSIC-ICCC), Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
Abstract
Atherosclerosis and its thrombotic complications are responsible for remarkably high numbers of deaths. The combination of in vitro, ex vivo, and in vivo experimental approaches has largely contributed to a better understanding of the mechanisms underlying the atherothrombotic process. Indeed, different animal models have been implemented in atherosclerosis and thrombosis research in order to provide new insights into the mechanisms that have already been outlined in isolated cells and protein studies. Yet, although no model completely mimics the human pathology, large animal models have demonstrated better suitability for translation to humans. Indeed, direct translation from mice to humans should be taken with caution because of the well-reported species-related differences. This paper provides an overview of the available atherothrombotic-like animal models, with a particular focus on large animal models of thrombosis and atherosclerosis, and examines their applicability for translational research purposes as well as highlights species-related differences with humans.
Abstract
Atherosclerosis and its thrombotic complications are responsible for remarkably high numbers of deaths. The combination of in vitro, ex vivo, and in vivo experimental approaches has largely contributed to a better understanding of the mechanisms underlying the atherothrombotic process. Indeed, different animal models have been implemented in atherosclerosis and thrombosis research in order to provide new insights into the mechanisms that have already been outlined in isolated cells and protein studies. Yet, although no model completely mimics the human pathology, large animal models have demonstrated better suitability for translation to humans. Indeed, direct translation from mice to humans should be taken with caution because of the well-reported species-related differences. This paper provides an overview of the available atherothrombotic-like animal models, with a particular focus on large animal models of thrombosis and atherosclerosis, and examines their applicability for translational research purposes as well as highlights species-related differences with humans.
Institut Català de Ciències Cardiovasculars
Hospital de la Santa Creu i Sant Pau, Pavelló del Convent
Sant Antoni Maria Claret, 167 08025 Barcelona
Espanya
T: +34 - 93 556 5900 F: +34 - 93 556 5559

